Oynakov E., Botev E.
УДК: |
550.343 |
Аннотация: |
The aim of this work is to study in detail the periodic components of the Balkan Peninsula seismicity. Constantly updated catalog of the University of Athens for the period 1964 - 2020 and the spatial window 32° - 44°N and 10° - 30°E is used. Time-stable periods have been found and a model has been built on their basis. Most of the obtained periods coincide or are close to the periods obtained for the global seismic process on Earth. The spectrum of fluctuations in the intensity of the flow of seismic events has a clear peak with a period that is very close to the period of solar activity change. The results obtained shed light on the nature of modern deformation processes and cycles of the Earth's crust destruction during earthquakes in the central and southern parts of Balkan Peninsula. Based on the study, there is reason to believe that strong earthquakes cause significant changes in the seismic regime of the study area. |
Ключевые слова: |
Balkan Peninsula, seismology, earthquake time analysis |
Abstracts: |
Целью данной работы является детальное изучение периодических составляющих сейсмичности Балканского полуострова. Используется постоянно обновляемый каталог Афинского университета за период 1964-2020 гг. и пространственное окно 32° - 44°N и 10° - 30°E. Найдены устойчивые во времени периоды и на их основе построена модель. Большинство полученных периодов совпадают или близки к периодам, полученным для глобального сейсмического процесса на Земле. В спектре колебаний интенсивности потока сейсмических событий имеется четкий пик с периодом, который очень близкий к периоду изменения солнечной активности. Полученные результаты проливают свет на природу современных деформационных процессов и циклов разрушения земной коры при землетрясениях центральной и южной части Балканского полуострова. На основании проведенного исследования есть основания полагать, что сильные землетрясения вызывают существенные изменения сейсмического режима в районе исследования. |
Keywords: |
Балканский полуостров, сейсмология, анализ сейсмичности |
1. |
Bak P., & Tang C. (1989). Earthquakes as a self-organized critical phenomenon. Journal of Geophysical Research: Solid Earth, 94(B11). Pp. 15635-15637. |
2. |
Brilinger D. (1975). Time series. Data analysis and theory. Holt, Renehart and Winston. Inc. New York. |
3. |
Cox D.R., & Lewis P.A. W. (1966). The statistical analysis of. Series of Events. The Annals of Mathematical Statistics. London. |
4. |
Gardner J.K and Knopoff L. (1974). Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian? Bull. Seism. Soc. Amer. 1974. 64:5. Pp. 1363-1367. |
5. |
Lyubushin A.A. & Pisarenko V.F. (1993). Investigation of the seismic regime using a linear model of the intensity of interacting point processes. Physica Zemly. 12. Pp. 81-87. |
6. |
Lyubushin A.A. (1998). Periodicities and catastrophes in the interaction of geophysical processes. Atlas of temporal variations of natural, anthropogenic and social processes. 2. Pp. 380-385. |
7. |
Lyubushin A.A., Pisarenko V.F., Ruzhich V.V. & Buddo V.Yu. (1998). Selection of periodicities in seismic regime. Volcanology and Seismology. 1. Pp. 62-67. |
8. |
Marpl-jr S.L. (1987). Digital Spectral Analysis: With Applications. Prentice Hall publishing house. New York. |
9. |
Nikolis G. & Prigogin I. (1979). Self-organizing in Nonequilibrum Systems. Wiley publishing house. New York. |
10. |
Ogata Y. & Akaike H. (1982). On linear intensity models for mixed doubly stochastic Poisson and self-exciting point processes. In Selected Papers of Hirotugu Akaike. Pp. 269-274. Springer, New York, NY. |
11. |
Sobolev G.A. (2003). Evolution of periodic fluctuations of seismic intensity before strong earthquakes. Physica Zemly. 11. Pp. 3-15. |
12. |
Sobolev G.A. (2004). Variations of microseismics before a strong earthquake. Physica Zemly. 6. Pp. 3-13. |
13. |
Sobolev G.A., Lyubushin A.A. & Zakrzhevskaya N.A. (2005). Synchronization of microseismic oscillations in the minute range of periods. Physica Zemly. 8. Pp. 3-27. |
14. |
Sobolev G.A., Valeev S.G. & Fashutdinova V.A. (2010). Multiharmonic model of Kamchatka seismicity. Earth Physics. 12. Pp.3-18. |
15. |
Sornette D. & Sammis C.G. (1995). Complex critical exponents from renormalization group theory of earthquakes: Implications for earthquake predictions. Journal de Physique I. 5(5). Pp. 607-619. |
16. |
Vere-Jones D. & Ozaki T. (1982). Some examples of statistical estimation applied to earthquake data. Annals of the Institute of Statistical Mathematics. 34(1). Pp. 189-207. |
17. |
Wiemer S. (2001). A software package to analyze seismicity: ZMAP. Seismological Research Letters. 72(3). Pp. 373-382. |
18. |
Wiemer S., M. Wyss. (2000). Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan. Bull. Seism. Soc. Am. 90(4). Pp. 859-869. |
19. |
Wyss M., G. Sobolev, J.D. Clippard (2004). Seismic quiescence precursors to two M7 earthquakes on Sakhalin Island, measured by two methods. Earth Planets Space. 56. Pp. 725-740. |