Каримуллах А., Братков В.В.
УДК: |
528.85 |
Аннотация: |
Городские территории постоянно расширяются на фоне ускоряющейся урбанизации, и их правильное выявление может оказаться полезным в широком спектре приложений в градостроительстве и экологических исследованиях. Определение городских границ представляет значительный исследовательский интерес. Возможность отслеживать рост и изменения облегчается простотой и точностью определения границ. В этом исследовании предлагается метод данных Sentinel-1 с открытым исходным кодом для обнаружения и определения границ между городом и деревней. Предварительная обработка изображения и матрица совпадений в оттенках серого были созданы в SNAP с использованием данных SAR Sentinel-1a для Кабула, Афганистан, а также сочетания текстуры и классификаций k-mean. К продуктам GLCM был применен классификатор k-mean с 3 категориями, а полученное изображение было экспортировано в формате GeoTIFF и импортировано в ArcGIS Pro. После постобработки в ArcGIS Pro была извлечена застроенная городская территория Кабула. Наконец, сгенерированная застроенная территория границы города Кабул была наложена на изображение Sentinel-2A в естественных цветах для оценки эффективности предложенного метода. |
Ключевые слова: |
Sentinel-1 GRD, SNAP, граница городской застройки, город Кабул |
Abstracts: |
Urban areas are continuously expanding, against the background of accelerating urbaniza-tion, while their correct detection might be useful in a wide range of applications in urban plan-ning and environmental studies. Identifying urban boundaries is an area of considerable research interest. The ability to monitor growth and change is facilitated by the ease and accuracy of boundary delineation. This research proposes an open-source sentinel-1 data method for detecting and delineating the urban-rural boundary. The image pre-processing and grey-level co-occurrence matrix were created in SNAP using Sentinel-1a SAR data for Kabul, Afghanistan, and a combi-nation of texture and K-means classifications. A 3-category K-Means classifier was applied to the GLCM products, and the resulting image was exported as a GeoTIFF and imported into ArcGIS Pro, After the post-processing in ArcGIS Pro, the built-up urban area of Kabul was extracted. Fi-nally, the generated built-up area of the Kabul city boundary was overlaid onto the Sentinel-2A natural color image to assess the effectiveness of the proposed method. |
Keywords: |
Sentinel-1 GRD, SNAP, Urban built-up boundary, Kabul city |
1. |
Organization W.H. Healthy cities: good health is good politics: toolkit for local governments to support healthy urban development. 2015. WHO Regional Office for the Western Pacific. |
2. |
Zha Y., J. Gao and S. Ni. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International journal of remote sensing. 2003. 24(3). Pp. 583-594. |
3. |
Bouzekri S., A.A. Lasbet and A. Lachehab. A new spectral index for extraction of built-up area using Landsat-8 data. Journal of the Indian Society of Remote Sensing. 2015. 43(4). Pp. 867-873. |
4. |
Bhatti S.S. and N.K. Tripathi. Built-up area extraction using Landsat 8 OLI imagery. GIScience & remote sensing, 2014. 51(4). Pp. 445-467. |
5. |
Estoque R.C. and Y. Murayama. Classification and change detection of built-up lands from Landsat-7 ETM+ and Landsat-8 OLI.TIRS imageries: A comparative assessment of various spectral indices. Ecological indicators. 2015. 56. Pp. 205-217. |
6. |
Goldblatt R., et al. Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sensing of Environment. 2018. 205. Pp. 253-275. |
7. |
Belgiu M. and O. Csillik. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote sensing of environment. 2018. 204. Pp. 509-523. |
8. |
Kaplan G. and U. Avdan. Object-based water body extraction model using Sentinel-2 satellite imagery. European Journal of Remote Sensing. 2017. 50(1). Pp. 137-143. |
9. |
Bramhe V., S.K. Ghosh and P.K. Garg. Extraction of built-up areas using convolutional neural networks and transfer learning from Sentinel-2 satellite images. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. 2018. 42(3). |
10. |
Sekertekin A., A. Marangoz and H. Akcin. Pixel-based classification analysis of land use land cover using Sentinel-2 and Landsat-8 data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017. 42. Pp. 91-93. |
11. |
Koppel K., et al. Sentinel-1 for urban area monitoring - Analysing local-area statistics and interferometric coherence methods for buildings' detection. in 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). 2015. IEEE. |
12. |
Lehner A., V. Naeimi and K. Steinnocher. Sentinel-1 for urban areas-comparison between automatically derived settlement layers from Sentinel-1 data and Copernicus high resolution information layers. in International Conference on Geographical Information Systems Theory. Applications and Management. 2017. SCITEPRESS. |
13. |
Corbane C., et al. Big earth data analytics on Sentinel-1 and Landsat imagery in support to global human settlements mapping. Big Earth Data. 2017. 1(1-2). Pp. 118-144. |
14. |
Cao H., et al. Operational built-up areas extraction for cities in China using Sentinel-1 SAR data. Remote Sensing. 2018. 10(6). Pp. 874. |
15. |
Sabo F., C. Corbane and S. Ferri. Inter-sensor comparison of built-up derived from Landsat, Sentinel-1, Sentinel-2 and SPOT5/SPOT6 over Selected Cities. Rapport technique. JRC. 2017. |
16. |
Modava M., G. Akbarizadeh and M. Soroosh. Integration of spectral histogram and level set for coastline detection in SAR images. IEEE Transactions on Aerospace and Electronic Systems. 2018. 55(2). Pp. 810-819. |
17. |
Van Truong V., N.D. Duong and T.A. Tuan. Mapping land cover using multi-temporal Sentinel-1a data: A case study in Hanoi. Vietnam Journal of Earth Sciences. 2017. 39(4). Pp. 345-359. |
18. |
Qin Y., et al. Quantifying annual changes in built-up area in complex urban-rural landscapes from analyses of PALSAR and Landsat images. ISPRS Journal of Photogrammetry and Remote Sensing. 2017. 124. Pp. 89-105. |
19. |
Esch T., et al. Delineation of urban footprints from TerraSAR-X data by analyzing speckle characteristics and intensity information. IEEE Transactions on Geoscience and Remote Sensing. 2009. 48(2). Pp. 905-916. |
20. |
Chen Z., et al. Urban land use mapping using high resolution SAR data based on density analysis and contextual information. Canadian Journal of Remote Sensing. 2013. 38(6). Pp. 738-749. |
21. |
Gamba P. and M. Aldrighi. SAR data classification of urban areas by means of segmentation techniques and ancillary optical data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2012. 5(4). Pp. 1140-1148. |
22. |
Taubenbock H., et al. Pixel-based classification algorithm for mapping urban footprints from radar data: a case study for RADARSAT-2. Canadian Journal of Remote Sensing. 2012. 38(3). Pp. 211-222. |
23. |
Gamba P., F. Dell'Acqua and G. Lisini. Change detection of multitemporal SAR data in urban areas combining feature-based and pixel-based techniques. IEEE Transactions on Geoscience and Remote Sensing. 2006. 44(10). Pp. 2820-2827. |