Миндубаев М.Г., Антипин А.Н.
УДК: |
550.361 |
Аннотация: |
Рассматриваются различные механизмы и темпы роста при формировании Земли. Этот вопрос неразрывно связан с динамикой формирования других планет земной группы и различий в их строении и химическом составе. Формирование Земли и планет земной группы связано с различного рода ограничениями: геохимическими, космохимическими, геологическими, радиоизотопными и др. Показано, что начальное тепловое состояние Земли, определяющее дальнейшую тепловую эволюцию планеты, может служить дополнительным ограничением, накладываемым на механизмы и динамику ее формирования. |
Ключевые слова: |
тепловая эволюция, формирование планет, планетезимали, скорость роста Земли, источники тепла, радиоизотопные методы, гравитационная дифференциация |
Abstracts: |
Various mechanisms and growth rates during the period of the planet Earth formation are considered. This issue is inextricably linked to the dynamics of other terrestrial planets formation and differences in their structures and chemical composition. The formation of the planets of the Earth group is associated with various kinds of limiting conditions: geochemical, cosmochemical, geological, radioisotope, etc. It is shown that the initial thermal state of the Earth, which determines the further thermal evolution of the planet, can serve as an additional restriction imposed on the mechanism and dynamics of its formation. |
Keywords: |
thermal evolution, planet formation, planetesimals, Earth growth rate, heat sources, radioisotope methods, gravitational differentiation |
1. |
Rubie D.C. et al. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus. 2015. V. 248. Pp. 89-108. |
2. |
Витязев А.В., Печерникова Г.В. Происхождение геосфер: новые результаты и остающиеся проблемы // Вестник. 2004. 1. С. 7-11. |
3. |
Heller R. et al. Habitability of the early Earth: liquid water under a faint young Sun facilitated by strong tidal heating due to a closer Moon. PalZ. 2021. Pp. 1-13. |
4. |
Schubert G., Turcotte D. L., Olson P. Mantle convection in the Earth and planets. Cambridge University Press. 2001. |
5. |
He T., Zhang Q., Liu Y. The cooling models of Earths early mantle. Acta Geochimica. 2023. Pp. 1-14. |
6. |
Korenaga J. Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth. Journal of Geophysical Research: Solid Earth. 2011. V. 116. No. B12. |
7. |
Korenaga J. Initiation and evolution of plate tectonics on Earth: theories and observations. Annual review of earth and planetary sciences. 2013. V. 41. Pp. 117-151. |
8. |
Сафронов В.С. Эволюция допланетного облака и образование Земли и планет. М.: Наука. 1969. 168 с. |
9. |
Lammer H. et al. Formation of Venus, Earth and Mars: constrained by isotopes. Space Science Reviews. 2021. V. 217. No. 1. Pp. 7. |
10. |
Gu J. T. et al. Comparisons of the core and mantle compositions of earth analogs from different terrestrial planet formation scenarios. Icarus. 2023. V. 394. Pp. 115425. |
11. |
Wetherill G.W., Stewart G.R. Accumulation of a swarm of small planetesimals. Icarus. 1989. V. 77. No. 2. Pp. 330-357. |
12. |
Lambrechts M., Johansen A. Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. arXiv preprint arXiv:1408.6094. 2014. |
13. |
Johansen A. et al. A pebble accretion model for the formation of the terrestrial planets in the Solar System. Science Advances. 2021. . 7. No. 8. Pp. eabc0444. |
14. |
Burkhardt C. et al. Terrestrial planet formation from lost inner solar system material. Science advances. 2021. V. 7. No. 52. Pp. eabj7601. |
15. |
Halliday A.N., Canup R.M. The accretion of planet Earth. Nature Reviews Earth & Environment. 2023. V. 4. No. 1. Pp. 19-35. |
16. |
Grewal D.S. et al. Rates of protoplanetary accretion and differentiation set nitrogen budget of rocky planets. Nature geoscience. 2021. V. 14. No. 6. Pp. 369-376. |
17. |
Schiller M., Bizzarro M., Siebert J. Iron isotope evidence for very rapid accretion and differentiation of the proto-Earth. Science dvances. 2020. V. 6. No. 7. Pp. eaay7604. |
18. |
Sahijpal S., Soni P., Gupta G. Numerical simulations of the differentiation of accreting planetesimals with 26Al and 60Fe as the heat sources. Meteoritics & Planetary Science. 2007. V. 42. No. 9. Pp. 1529-1548. |
19. |
Neumann W., Breuer D., Spohn T. Differentiation and core formation in accreting planetesimals. Astronomy & Astrophysics. 2012. V. 543. Pp. A141. |
20. |
Neumann W., Breuer D., Spohn T. Differentiation of Vesta: Implications for a shallow magma ocean. Earth and Planetary Science Letters. 2014. V. 395. Pp. 267-280. |
21. |
Sramek O. et al. Thermal evolution and differentiation of planetesimals and planetary embryos. Icarus. 2012. V. 217. No. 1. Pp. 339-354. |
22. |
Bryson J.F.J., Neufeld J.A., Nimmo F. Constraints on asteroid magnetic field evolution and the radii of meteorite parent bodies from thermal modelling. Earth and Planetary Science Letters. 2019. V. 521. Pp. 68-78. |
23. |
Dodds K.H. et al. The thermal evolution of planetesimals during accretion and differentiation: Consequences for dynamo generation by thermally-driven convection. Journal of Geophysical Research: Planets. 2021. V. 126. No. 3. Pp. e2020JE006704. |
24. |
Bhatia G.K., Sahijpal S. The early thermal evolution of Mercury. Procedia Engineering. 2015 Jan 1;127: Pp. 413-417. |
25. |
Bhatia G.K., Sahijpal S. The early thermal evolution of Mars. Meteoritics & Planetary Science. 2016. V. 51. No. 1. Pp. 138-154. |
26. |
Сафронов В.С. Современное состояние теории происхождения Земли // Изв. АН СССР. Физика Земли. 1982. Т. 6. С. 5. |
27. |
Kokubo E., Ida S. On runaway growth of planetesimals. Icarus. 1996. V. 123. No. 1. Pp. 180-191. |
28. |
Kokubo E., Ida S. Oligarchic growth of protoplanets. Icarus. 1998. V. 131. No. 1. Pp. 171-178. |
29. |
Rafikov R.R. The growth of planetary embryos: orderly, runaway, or oligarchic? The Astronomical Journal. 2003. V. 125. No. 2. Pp. 942. |
30. |
Kaula W.M. Thermal evolution of Earth and Moon growing by planetesimal impacts. Journal of Geophysical Research: Solid Earth. 1979. V. 84. No. B3. Pp. 999-1008. |
31. |
Печерникова Г.В. Время роста Земли // Доклады Академии наук. 2005. Т. 401. №3. С. 391-394. |
32. |
Wood B.J., Walter M.J., Wade J. Accretion of the Earth and segregation of its core. Nature. 2006. V. 441. No. 7095. Pp. 825-833. |
33. |
Chambers J. Planetary accretion in the inner Solar System. Earth and Planetary Sci. Let. 2004. V. 223. Pp. 241-252. |
35. |
Olson P., Sharp Z., Garai S. Core segregation during pebble accretion. Earth and Planetary Science Letters. 2022. V. 587. Pp. 117537. |
36. |
Labrosse S., Hernlund J. W., Coltice N. A crystallizing dense magma ocean at the base of the Earths mantle. Nature. 2007. Vol. 450. Iss. 171. Pp. 866-869. |
37. |
Gomi H. et al. The high conductivity of iron and thermal evolution of the Earths core. Physics of the Earth and Planetary Interiors. 2013. Vol. 224. Pp. 88-103. |
38. |
Stacey F.D., Davis P.M. Physics of the Earth. Cambridge University Press. 2008. |
39. |
Solomatov V. Magma oceans and primordial mantle differentiation. Evolution of the Earth. 2007. V. 9. Pp. 91-119. |
40. |
Elkins-Tanton L.T. Magma oceans in the inner solar system. Annual Review of Earth and Planetary Sciences. 2012. V. 40. Pp. 113-139. |
41. |
Yukutake T. The inner core and the surface heat flow as clues to estimating the initial temperature of the Earth's core. Physics of the Earth and Planetary interiors. 2000. V. 121. No. 1-2. Pp. 103-137. |
42. |
Davies C.J. Cooling history of Earths core with high thermal conductivity. Physics of the Earth and Planetary Interiors. 2015. V. 247. Pp. 65-79. |
43. |
Витязев А.В., Печерникова Г.В., Сафронов В.С. Планеты земной группы: Происхождение и ранняя эволюция. Наука. Гл. ред. физ.-мат. лит. 1990. |
44. |
Bhatia G.K. Early thermal evolution of the embryos of Earth: role of 26Al and impact-generated steam atmosphere. Planetary and Space Science. 2021. V. 207. Pp. 105335. |